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This paper reports experimental and numerical results on the effects of wall 
conductance on natural convection in a two-dimensional rectangular cavity. Three 
different configurations in which the external wall is heated from the side, top and 
bottom and cooled from the side, bottom and top respectively have been investigated. 
Experiments have been performed in a square enclosure with solid walls made from 
Lexan and forming a square air-filled cavity. A Mach-Zehnder interferometer was 
used to determine the temperahre distributions in the fluid. Solutions for stationary 
two-dimensional equations of energy and motion governing heat conduction in the 
solid and natural convection flow and heat transfer of a Boussinesq fluid contained 
in the cavity have been obtained numerically. The coupled flow distributions, 
including the appearance of multicellular flow, temperature profiles and heat-transfer 
predictions compare favourably with experimental results. Heat conduction in the 
connecting (unheated) walls is shown to simultaneously stabilize and destabilize the 
fluid in the cavity. 

1. Introduction 
Natural-convection heat transfer in cavities has been receiving considerable 

attention. Numerous experimental and numerical computational studies dealing with 
natural convection in enclosures have been reported in the literature. Excellent 
reviews are available (Catton 1978; Ostrach 1982; Catton et al. 1983) and there is 
no need to repeat them. Most of the studies have neglected the interaction between 
convection in the fluid-filled cavity and conduction of heat in the walls forming the 
enclosure by using idealized boundary conditions such as those corresponding to a 
prescribed temperature or heat flux. I n  all enclosures thermal boundary conditions 
(wall conductance) can lead to stabilization or destabilization of the flow and 
corresponding large changes in the convective heat-transfer coeflicient . Heat conduc- 
tion in insulated (on the outside) walls forming a cavity causes the temperature 
distribution in the insulated wall to deviate from that of the adiabatic case, and thus 
precludes the possibility of obtaining experimentally a truly adiabatic boundary 
condition in some fluids such as air. Natural convection in the cavity can also induce 
conduction heat transfer in the surrounding walls (ElSherbiny, Hollands & Raithby 
1982). The major thesis of this paper is that  wall heat conduction and radiation 
interchange among the walls are inevitable in any cavity. 

It has been recognized for some time that thermal boundary conditions (wall con- 
ductance and radiation heat-exchange) on enclosure boundaries influence convective 
flow and heat transfer, but relatively little work has been done (Catton et al. 1983). 
Solutions have been obtained for the case when the unheated walls of the enclosure 
are adiabatic and perfectly conducting (Catton, Ayyaswamy & Clever 1974). The 



154 D. M .  Kim & R. Vislcanta 

results show large differences in the local convective heat transfer a t  the heated wall 
for the two cases, particularly in the vicinity of the unheated wall. Natural convection 
in a two-dimensional enclosure surrounded by one-dimensional conducting and 
radiating walls has been studied numerically (Larson & Viskanta 1976). The effects 
of cell-wall thickness and thermal conductivity on natural-convection heat transfer 
within inclined rectangular cavities have been analysed in order to gain understanding 
of the efficiency of cellular structures to reduce convective heat losses in flat-plate 
solar collectors (Koutsoheras & Charters 1977 ; Meyer, Mitchell & El-Wakil 1982). 
Natural convection in a rectangular enclosure subjected to comparable horizontal and 
vertical temperature differences has been studied (Shiralkar & Tien 1982). No 
experimental studies of the problem considered in the paper have been identified in 
the literature, but two recent, remotely related experiments should be mentioned 
(Meyer et al. 1982; Krane & Jesse 1983). The effects of thermal boundary conditions 
on buoyancy driven convective flow in cavities has been identified as an important 
problem for future research (Catton et al. 1983). 

The intent of this present study is to investigate experimentally and analytically 
the effects of wall heat conduction on natural convection in a two-dimensional square 
cavity having finite wall conductances in which air was used as the working fluid. 
Three different orientations of the heated enclosure wall with respect to the 
gravitational field are considered: (i) heating from a vertical wall and cooling from 
the opposite side; (ii) heating from the top and cooling from the bottom; and (iii) 
heating from the bottom and cooling from the top. Experimental data were obtained 
for a square enclosure made of relatively low thermal conductivity material with 
atmospheric air as the working fluid in the cavity. To obtain improved understanding 
of the effects of wall conductance on the convective flow, data are compared with 
the numerical results based on a theoretical model. 

2. Experiments 
The purpose of the experiments was to simulate in a well-controlled laboratory 

experiment convective heat transfer in a cavity surrounded by finite-conductance 
walls and to gain understanding of the effects of heat conduction in the walls on 
natural convection in the fluid. To this end, three different orientations of the 
heated-cooled surfaces with respect to the gravitational field have been studied 
(figure 1 ) .  In  the experiments the emphasis is on the convective effects resulting from 
heat conduction in the walls and from the system orientation. 

2.1. Test cell 

A schematic diagram of the test cell used for the experiments is shown in figure 2. 
Because of the symmetry in the geometry and boundary conditions of the test 
material, the test cell is formed by combining three identical rectangular structures. 
The central part of the test solid was used for the measurement, and the two sides 
of the test material served to  minimize edge effects, such as heat gains or losses, by 
the test material. The inside dimensions of each cavity test material are 3.6 by 3.6 cm 
and the outside dimensions are 6 by 6 cm. The length of a test cell along the optical 
path is 19 em. A larger test cell would have been desirable to  minimize the edge effects. 
Unfortunately, a width and height limit in the direction of the optical path is imposed 
by the available interferometer optics. A Mach-Zehnder interferometer of typical 
rectangular design having 25 ern diameter optics was employed as a diagnostic tool 
for measuring the temperature distribution in a cavity filled with air a t  atmospheric 
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FIGURE 1 .  Three different orientations of the test conditions and thermocouple locations for the 

measurement in the solid wall: ( a )  side heating; ( b )  bottom heating; ( c )  top heating. 
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FIGURE 2. Test cell: A, test region (air); B, test region (solid); C, heat exchanger; D, air gap; 
E, insulation materials; F, flanges: G, optical glass; H, removable door. 

pressure. The entire test cell was designed so that it could be easily oriented, and the 
three heating conditions illustrated in figure 1 (i.e. heating from the side and cooling 
from the side, heating from the bottom and cooling from the top, and heating from 
the top and cooling from the bottom) could be investigated. 

Lexan was chosen as the wall material because it is readily machinable, has low 
thermal conductivity, has well-established thermophysical properties and is moderatc 
in cost. A moderate Biot number is required in order to investigate conduction-induced 
or stabilized convection in a cavity. If the thermal conductivity is too high, the Biot 
number becomes too small and conduction becomes the dominant heat-transfer mode 
in the system. This is one of the most important reasons why Lexan was chosen as 
a test material instead of others. The thermophysical properties of Lexan a t  a 
temperature of 25 "C are as follows (Stedfeld 1979) : 

Thermal conductivity = 0.201 U' m-' OC-', 
Specific heat = 1256.0 W s kg-' O C 1 ,  

Specific gravity = 1.2. 
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The interior surface of the cavity was carefully sprayed with several coats of 3M 
Nextell Black Velvet paint to give the surface an emissivity greater than 0.99. 

Two of the outside walls of the test cell were maintained a t  uniform but different 
temperatures. Multiple-pass heat exchangers, through which a working fluid a t  a 
desired temperature can be circulated by a constant-temperature bath and maintain 
the surfaces a t  a uniform temperature, were designed and attached to  the walls of 
the test cell to provide constant-temperature boundaries. Optical-quality glass 
windows, with dimensions 4.0 by 4.0 and 0.9 cm thick, were installed a t  the front 
and back faces of the test cell for interferometric measurements. The entire test cell 
(top, bottom, sidewalls and ends) were covered by two layers (10 cm thick) of 
Styrofoam insulation in order to minimize heat gains or losses from the surroundings. 
The ends of the test cell were covered with removable insulation to facilitate 
photographic and optical observations. 

The thermal boundary conditions imposed on the outside walls of the test cell were 
established by circulating a temperature-controlled working fluid from a constant- 
temperature bath. Two temperature baths were used in the experiments. This 
temperature bath was capable of maintaining a present temperature to within 0.1 "C 
a t  a maximum flow rate (4.0 litre/min). 

2 .2 .  Instrumentation 

Eleven copper-constantan thermocouples were used for measuring temperatures a t  
different locations in the solid. All of the thermocouples were placed a t  the centre 
of the midplane of the solid, They were read with an automatic-scanning multichannel 
data logger with a printer capable of resolving 0.1 "C and a calibrated accuracy of 
0.1 "C. 

The temperature distribution in the fluid (air) tilling the cavity was measured using 
a Mach-Zehnder interferometer. A 10 mW He-Ne laser served as the light source for 
the interferometer, The primary reason for using a laser source was that i t  eliminat,ed 
the need for compensation of the optical path in the reference leg of the inter- 
ferometer. 

2.3. Test procedure and data reduction 

The test cell was tixed in the test position and centred in the test beam of the 
interferometer. A 35 mm camera was used to photograph the interference-fringe 
pattern reflected from the parabolic mirror and focused a t  the centre of the test cell. 
Kodak technical film (TP 135-36) was used to obtain clear and sharp photographs 
of the interference-fringe images. 

The test was initiated by supplying the heat exchanger with a working fluid to  
impose isothermal boundary conditions on the outside walls of the cell. A photograph 
of the interference-fringe patterns was taken every ten minutes by removing the 
insulation covering the windows to facilitate photographing of the patterns. The in- 
sulation was immediately replaced after photographing. At the same time, the 
temperatures in the solid were recorded using the data logger. The experiments 
continued until steady-state conditions were reached. A steady state was assumed 
to exist when the temperatures a t  the solid-fluid interface did not change. 

The interference-fringe data were interpreted using the procedure described in the 
literature (Hauf & Grigull 1970). The temperature a t  a reference point was measured 
with a thermocouple. Then, for each reference fringe pattern evaluated, the fringe 
shifts were calculated for the temperature about the reference temperature. For a 
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more convenient and accurate reduction of data, a computer program was written 
to determine the temperature at every fringe shift for the measured reference 
temperature. 

3. Analysis 
3.1. Physical model and a ~ s u ~ ~ t ~ o n s  

The physical model and coordinate system of the problem are illustrated schematically 
in figure 3. The two-dimensional rectangular cavity is formed by walls having finite 
conductance. The vertical and the horizontal walls can be of different thickness, but 
are assumed to be of the same material. Initially, the walls of the enclosure and the 
fluid inside the cavity are assumed to be at a constant, uniform temperature, and 
the fluid is taken to be stagnant. The horizontal connecting walls are assumed to be 
insulated on the outside. At time t > 0 constant but different temperatures are 
suddenly imposed on the outside of the two walls and maintained until steady-state 
conditions are reached. 

It is assumed in the analysis that  the thermophysical properties of the walls and 
of the fluid are independent of temperature, and the flow is laminar. The fluid is 
Newtonian, incompressible, and the Boussinesq approximation is valid. The fluid 
motion and heat transfer in the cavity are assumed to be two-dimensional. Radiation 
heat exchange between the walls is neglected in comparison with convection, and the 
fluid is assumed to be radiatively non-participating. Viscous heat dissipation in 
the fluid is assumed to be negligible in comparison with conduction and convection. 

3.2. Model equations 

For the sake of brevity, the conservation equations are written in dimensionless form 
from the start, but are given here only for the orientation when heating is from one 
vertical side and cooling is from the opposite one (see figure 1 a) .  

The transient heat-conduction equation in the wall is 

where 

0, = = T -Tc 7 = -  at < = -  X y = -  Y 
TH-Tc’ 12 ’ I ’  h’  

The conservation equations of mass, momentum and energy for the fluid can be 
expressed in standard form by introducing the concepts of stream function and 
vorticity . The dimensionless vorticity, energy and stream-function equations become 
respectively 
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FIGURE 3. Physical model and coordinate system for heating from the left and cooling from the 
right vertical surfaces. 

where 

The temperature boundary conditions on the outside walls of the enclosure are 

and 

The temperature boundary conditions a t  the interior walls (solid-fluid interface) of 
the enclosure are 

and 

where k* = k , /k .  The boundary conditions on the velocity a t  the surface bounding 
the cavity are 

"5 
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The initial temperature and velocity boundary condition are taken as 

Q(g, 7,O) = 0. (14) 

We note that in addition to such customary dimensionless parameters as the 
Rayleigh number R a .  the Prandtl number Pr and the aspect ratio A = h/l of the 
cavity, the following dimensionless groups arise : ( i )  the thermal diffusivity ratio a* ; 
(ii) the thermal conductivity ratio k * ;  (iii) the aspect ratio H I L  of the enclosure; and 
(iv) the void fraction @. Even though they do not appear explicitly in dimensionless 
model equations, the arrangement of the cavity with respect to the wall and the void 
fraction $ are addjtional factors which influence the temperature distributions in wall 
and the fluid as well as the heat transfer across the system. 

Analytical solutions of the model equations (1)-(4) are not feasible, and approximate 
methods available are not sufficiently flexible. Therefore a numerical solution 
procedure has been adopted. The AD1 method (Peaceman & Rachford 1955) has been 
employed for the numerical solution of the system of transient elliptic equations. For 
this purpose the stream-function equation (4) was also rewritten in a transient form 
and solved using the AD1 method until a steady state was reached. A non-uniform 
grid was used in the cavity to resolve the variables better near the boundaries. The 
details of the method of solution together with results verifying the numerical 
algorithm for the special case of isothermal walls are given elsewhere (Kim 1983). The 
accuracy of the numerical results obtained for the special case of isothermal vertical 
and perfectly adiabatic (horizontal connecting) walls was checked by comparing the 
predictions with the benchmark results (de Vahl Davis & Jones 1983) and good 
agreement has been obtained (Kim 1983). The results reported in this paper have been 
generated using a 26 x 26 grid for the enclosure and 16 x 16 in the cavity. 

4. Results and discussion 
A number of experiments have been performed for the three different orientations 

of the heated and cooled boundaries of the enclosure. The temperature differences 
imposed across the wall ranged from AT = 34 "C to AT = 68 "C. I n  all of the 
experiments the cold wall was maintained a t  a temperature of T, = -5 "C.  The 
maximum temperature in the test cell was limited by the material (Lexan) and 
heat-loss considerations. Owing to space limitations, only a representative sample of 
the large amount of available experimental data and numerical results are presented 
and discussed in this paper. 

Before performing the experiments, an energy balance was established on the test 
cell. The details are given elsewhere (Kim 1983). Suffice it only to mention that the 
energy balance on the system was closed to  within about 1.5 yo, At larger temperature 
differences, the measured and predicted heat losses agreed with each other to within 
less than 1 yo and accounted for about 7 Yo of the total energy input to the system. 

4.1. Heating and cooling f rom the sides 
Interference- fringe patterns 

The interference t'ringe patterns in the fluid (air) photographed are given at 
different times in figure 4 for a particular experiment. Initially, the solid and the 
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(C) (4 
FIGURE 4. Transient isotherms for Ra* = 1.01 x lo6, A = 1, H / L  = 1, d = 0.36, k* = 7.4, Pr = 0.71 

and a* = 0.008: (a )  7 = 5; (b) 10; (e) 20; (d )  00 (steady state). 

fluid were at a uniform temperature To = 21 "C (0, = 0.5). The hot wall was kept a t  
a temperature of TH = 47 "C (0, = 1.0) and the cold wall at' a temperature of 
Tc = -5 "C (0, = 0). The interference fringes first appeared near the vertical walls, 
since the thermal disturbance through the wall reached the fluid a t  7 = 5. As a result 
of the temperature difference between the vertical wall and the fluid, a buoyancy force 
was generated and natural-convection motion was initiated in the cavity as shown 
in figure 4 ( a ) .  The influence of natural convection on the fringe patterns became 
evident when the time progressed, as shown in figures 4(b,  c), since the fringes became 
more distorted near the centreline of the cavity. The fringes are more dense near the 
vertical walls a t  steady state (figure 4d) .  This means that temperature gradients 
became greater as natural convection developed and boundary layers were formed 
near the heated (cooled) walls. Note that the temperature gradients do not vanish 
a t  the horizontal top and bottom surfaces of the cavity. These gradients also increase 
as the heating continues. It is appropriate to mention that during preliminary 
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experimentation the image of the enclosure and the fringe-shift patterns were 
carefully monitored on a frosted-glass screen placed between the test, cell and the 
camera in order to detect motions in the fringe field which would indicate instabilities 
in the fluid. At no time during the transient and after steady-state conditions had 
been reached were instabilities detected. Also, no oscillatory convection with periodic 
or non-periodic flow structures were observed. This may be due to the fact that  the 
threshold Rayleigh number for such convection was not exceeded in the experiments. 

The photograph (figure 4d)  clearly shows that thermal boundary layers are formed 
near the vertical walls. The interference fringes are spaced almost equally along the 
top and the bottom surfaces of the cavity owing to adiabatic conditions imposed on 
the outside horizontal walls. In  other words, the horizontal wall tries to maintain a 
linear temperature distribution due to heat conduction in the wall. The temperature 
gradients clearly indicate that there is heat flow from the fluid to most parts of the 
upper connecting wall. This is due to the fact that  as the fluid sweeps the hot vertical 
wall i t  becomes heated. As the warm fluid flows along the upper wall i t  continues 
to be heated for a short distance, but a t  some point along the horizontal wall the 
direction of heat flow is reversed and the fluid begins to release some of its energy 
to the wall. As the cool vertical wall is approached the direction of flow is reversed. 
The fluid then flows along the cold vertical wall and continues to give up some of 
its energy. The direction of flow is again reversed by the bottom horizontal wall. As 
the lower connecting wall is swept by the cold fluid, the direction of heat flow is still 
from the fluid to  the wall; however, the direction of heat flow is reversed a t  some 
distance from the vertical cold wall. The density of fringes is higher near the lower 
half than the upper half of the left (hot) wall. This indicates that  the local heat flux 
is greater a t  the lower half of the wall forming the cavity. The interference fringe 
patterns a t  the right (cold) vertical wall indicate a trend that is opposite to that a t  
the left (hot) wall. 

Predicted isotherms and flow jields 

Figure 5 shows the contours of the isotherms, the streamlines and the velocity 
vectors for the modified Rayleigh number Ra" = lo6. The dimensionless constant- 
temperature lines in both the solid (wall) and the fluid are given for temperature 
difference A 0  = 0.1. The bounding surfaces of the fluid-filled cavity are indicated with 
dashed lines. Figure 5(b )  shows the streamlines in the fluid (inscribed region). The 
contours of the stream function are not spaced equally but have been selected to 
illustrate salient features of the flow. Figure 5 ( c )  depicts the dimensionless isotherms 
in the fluid with greater resolution than could be shown in figure 5 ( a ) .  The 
dimensionless velocity vectors are given in figure 5 ( d ) .  The arrows denote the 
direction and magnitude of the absolute-velocity vector a t  each grid point. Near the 
adiabatic horizontal outside walls the temperature decreases almost linearly with the 
distance from the hot (left) vertical wall to  the cold (right) vertical wall (figure 5 ) .  
However, natural convection causes the fluid in the cavity to take up a temperature 
profile that  is different from the linear one. Note that the isotherms clearly indicate 
that the top and bottom walls of the cavity are nowhere adiabatic, and heat is 
transferred to or from the walls to the fluid. 

The streamlines (figure 5 b )  and velocity vectors (figure 5 d )  clearly show that the 
velocity boundary-layer thickness on the hot wall increases in the same way as on 
the cold wall. The growth is different and is largely due to the change in the effect 
of buoyancy. As expected, the velocity boundary layers are thirkest in the corners 
of the cavity, where the direction of flow is changed. 
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FIGURE 5 .  The contours of (a )  isotherms (A@ = 0.1); (b)  streamlines; (c) isotherms in the cavity 
(A@ = 0.065); ( d )  velocity vectors. Ra* = lo6, Pr = 0.71, A = 1, L/H = 1, 4 = 0.36, k* = 10 and 
a* = 0.005. 

Extensive numerical results for a range of dimensionless parameters of interest 
have been obtained (Kim 1983), but cannot be reported here because of space 
limitations. For example, results show that as the Vrandtl number is increased, the 
dimensionless velocities also increase, and natural-convection circulation becomes 
more intense. 

Local and average Nusselt numbers 

Because the rectangular cavity has four conducting walls, the local Nusselt number 
should be defined for all four walls. Figure 6 illustrates the local-Nusselt-number 
variations along the cavity walls. Because of the definitions adopted, the local Nusselt 
number is positive if heat flows from the wall to the fluid, and i t  is negative if heat 
flows from the fluid to the wall. At the connecting horizontal walls the local Nusselt 
number may be positive or negative, depending on the location along the walls. This 
indicates that for conjugate (combined conduction-convection) problems the Nusselt 
number may not be the most desirable heat-transfer parameter for correlating results 
and data. For the problem considered, the Nusselt number not only depends on the 
geometry of the cavity and thc rclcvant cwnventional parameters (&a*, Pr and A ) ,  
but also on the thermophysical properties of the wall materials, the porosity, and the 
orientation of the cavity within the solid wall. 
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FIGURE 6. Local-Nusselt-number distributions along the four wallis; Ra* = lo6, Pr = 0.71, 
A = 1 ,  HIL = 1 ,  q4 = 0.36, k* = 10 and a* = 0.005. 

The maximum in the local Nusselt number a t  the hot inside (vertical) wall, Nu,, 
occurs in the lower half of the cavity (figure 6). The results are consistent in trends 
with those reported in the literature (Bajorek & Lloyd 1982). As can be seen from 
the figure, the local Nusselt number attains the highest value near 7 = 0.7. This is 
caused by the cold fluid, which descended from the cold wall, moved along the lower 
surface, and impinged on the hot wall near its base. The location of the maximum 
local Nusselt number a t  the hot vertical wall is shifted down to the lower half of the 
cavity as the Rayleigh number is decreased. It is interesting to note the change in 
the heat-flow direction a t  the horizontal connecting walls. There is heat flow from 
the fluid to the wall and from the wall to the fluid a t  both the top and bottom of 
the horizontal connecting walls. The locations (along the horizontal walls) where the 
direction of heat flow is reversed depends on the Rayleigh number, the Prandtl 
number and other parameters (4, A ,  L / H  and k * ) .  

The local Nusselt number depends strongly on the void fraction of the solid wall. 
For example, the local Nusselt numbers with 4 = 0.5 are almost twice as large as those 
with 4 = 0.25 for the same Rayleigh number (Kim 1983). This is due to the larger 
temperature differences between the hot and the cold inside walls with an increase 
in the void fraction. It should be emphasized that the value of the Rayleigh number 
Ra* is based on the outside wall temperature difference and the assumption of linear 
temperature variation across the system. 

The results for the average Nusselt numbers have been calculated over a range of 
Rayleigh numbers and are presented in table 1 .  As the Rayleigh and Prandtl 
numbers increase, the average Nusselt number on the four walls of the cavity also 
increases. Although the average Nusselt numbers a t  the top and the bottom walls are 
quite small, the local Nusselt numbers can be quite large, as shown in figure 6. In  
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104 1 0 5  1 0 6  1 0 7  

0.01 1.176 1.291 2.130 3.300 
0 . 1  1.252 1.661 3.092 4.580 
0.71 1.310 2.195 3.801 5..517 
10 1.329 2.303 4.154 5.957 
100 3.180 3.325 4.312 6.262 

TABLE 1 .  Effect of Prandtl number on the average Nusselt number at the hot vertical wall ; H / I ,  = 1 ,  
$ = 0.36, k* = 10.0 and a* = 0.005 

other words, the total heat transfer across the top and bottom walls is small, 
since the average Pu’usselt number is quitc small a t  the top and the bottom of the 
cavity, but the local heat transfer through the top and the bottom walls can be 
significant. 

The results for the average Nusselt numbers a t  the hot wall have been calculated 
over a range of Rayleigh numbers, Prandtl numbers and void fractions. An empirical 
correlation of the average Nusselt number for a square cavity surrounded by 
conducting walls has been obtained from a least-squares fit of the numerical results : 

0.410rj0.93(k*)0.138(Ra*)0.2 (0.3 < Pr < 50), (15) 

0.485rj0.93 (k*)0.138 (RU*)O.~ (50 < Pr < 100). (16) 

These equations are based on the following range of parameters: lo5 < Ra* < lo7, 
0.25 < rj < 0.6 and 3 < k* < 100. As both the Rayleigh number and the void fraction 
increase, the average Nusselt numbers on the hot wall of the cavity also increase. 

It is desirable to compare the average Nusselt numbers given by (15) and (16) for 
an enclosure having finite-conductance walls with the results for enclosures with 
conducting or perfectly insulated horizontal connecting walls. The empirical corre- 
lations for the perfectly conducting and perfectly insulated horizontal walls reported 
in the literature (Roux et al. 1978) are 

where Ra = gP(T, - T,) 13/va. The average Nusselt number (with Ra* = lo5 and 
k* = 10) calculated from (15) for a void fraction of 0.36 is 2.196, and for a void fraction 
of 0.5 i t  is 2.96. These two Nusselt numbers are compared with the average values 
of 3.27 and 4.44 which are obtained from (17) and (18) respectively, for a Rayleigh 
number of Ra = lo5. The average Nusselt numbers for the two systems are not 
directly comparable, since the Rayleigh numbers are not based on the same 
temperature difference across the cavity. 

As the thermal-conductivity ratio E* increases, the average Nusselt number 
increases (Kim 1983). However, the value is not sensitive to the thermal-diffusivity 
ratio a*. The effect of a* should not be significant on the steady-state results, since 
the ratio is only important for transient conditions in the energy equation for the 
solid. The thermal-conductivity ratio k* appears in the solid-fluid interface boundary 
conditions which control the solutions of the governing equations. Therefore the local 
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FIGURE 7 .  Comparison of the measured and predicted steady-state temperatures in air in the 
absence of radiation; Ra' = 0.64 x lo6, Pr = 0.71, A = 1, H j L  = 1, q5 = 0.36, k* = 7.4 and 
a* = 0.008. 

and the average Nusselt numbers are much more sensitive to the thermal-conductivity 
ratio than to the thermal-diffusivity ratio. 

Comparison of predictions with experimental data 

A rather critical comparison between the predicted and measured steady-state 
temperatures in air is shown in figure 7. The squares denote the experimental data 
points, and the solid lines denote the isotherms predicted by the model described in 
$3. The calculations presented here are based on a model that neglects radiation heat 
exchange among surfaces. The agreement between the analysis and the data is 
excellent throughout most of the cavity. One of the reasons for the good agreement 
is that  radiation heat flux a t  the inside hot vertical wall is a relatively small fraction 
of the total (convective plus radiative) flux for the thermal conditions in the 
experiment (Kim 1983). The other factor contributing to the good agreement is that 
the temperature of the system is close to the ambient, so that heat losses (gains) to 
(from) the laboratory environment are very small in comparison to heat transfer 
across the system. 

Figure 8 shows a comparison between the measured and predicted steady-state 
temperature distributions in the cavity for a larger temperature difference than for 
the experiment discussed in figure 7 .  Although the agreement between the data and 
predictions is good, the analysis could not predict accurately the data at the isotherms 
0.21 and 0.79. The discrepancy between the data and predictions could be due to 
uncertainties in thermophysical properties of the solid and/or truncation error in the 
numerical model at higher modified Rayleigh numbers. Uncertainties in the knowledge 
of the vorticity boundary conditions a t  the solid-fluid interface and insufficiently fine 
grid for handling the nonlinearities of the variables a t  higher Rayleigh numbers may 
also contribute to this discrepancy. A comparison of the experimental data with 
model predictions when radiation heat exchange between surfaces is accounted for 
has been made (Kim 1983), but, for the sake of conciseness, the results are not given 
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FIGURE 8. Comparison of the measured and predicted steady-state temperatures in air in the absence 
of radiation; Ra* = 1.01 x lo6, Pr = 0.71, A = 1, H I L  = 1, $ = 0.36, k* = 7.4 and a* = 0.008. 

here. At higher temperatures and temperature differences imposed across the test wall 
the discrepancy between data and predictions increased because of the neglect of 
radiation heat exchange between the surfaces and increased heat losses from the test 
cell. The results show that inclusion of radiation exchange between surfaces for higher 
absolute temperatures of the system decreases the discrepancy between data and 
predictions a t  some locations and increases a t  the others (Kim 1983). The agreement 
between measured and predicted temperatures in the solid and the surface of the 
cavity was in general very good as the comparison is more forgiving than for the 
temperature distribution in the fluid. 

The results (figures 7 and 8) show that the inside hot and cold surfaces of the cavity 
are not isothermal, but even more importantly, because of the finite conductance of 
the connecting horizontal walls, the surface temperatures of the connecting walls do 
not vary linearly with the distance as would be expected for perfectly adiabatic 
boundaries. The wall effects are clearly evident from an examination of the results. 
The interaction between conduction in the connecting horizontal walls and convection 
in the fluid produces unstable stratification of the fluid in the lower left- and the upper 
right-hand corners of the cavity. Density stratification results in the upper left- and 
lower right-hand corners of the cavity, and the stratification is more intense far the 
lower Rayleigh number (figure 7) than for the larger one (figure 8). This interaction 
causes relatively constant temperature regions adjacent to the heated and cooled 
walls respectively. The tendency toward thermal stratification causes an adverse 
temperatue gradient adjacent to the connecting walls, and this adverse temperature 
gradient appears likely to cause instability to secondary flow. However, such flow 
could not be detected from the interference-fringe patterns photographed. 

For conjugate (combined conduction-convection) problems the Nusselt number 
may not be an appropriate parameter for correlating results, since i t  not only depends 
on the geometry of the cavity and the relevant parameters (Ra, Pr and A )  but also 
on the thermophysical properties of the wall material, the porosity and the orientation 
of the cavity in the enclosure. Therefore local Nusselt numbers have not been 
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(C) (0 
FIGURE 9. Transient isotherms for Ra* = 1.01 x lo6, Pr = 0.71, A = 1 ,  H I L  = 1, q5 = 0.36, k* = 7.4 

and a* = 0.008: (a )  T = 5 ;  ( b )  10; (c) 20; (d )  00 (steady state). 

determined from interference-fringe data and compared with predictions, because 
there is a question of uniqueness. Since the local Nusselt number can become negative 
a t  the horizontal walls of the cavity, i t  appears that a local dimensionless heat flux 
may be a more suitable parameter for correlating the convective-heat-transfer 
results. 

4.2. Heating f r o m  the top and cooling f r o m  the bottom 

Interference-fringe patterns 

The transient temperature distributions for heating the enclosure from above and 
cooling from below are shown in figure 9. The fluid is gravitationally stable, and heat 
flows only by conduction in the cavity. Initially, the solid and the fluid have a uniform 
temperature T, = 21 "C (0, = 0.5). The hot wall is kept a t  a temperature of 
T, = 47 "C (0, = l . O ) ,  and the cold wall is maintained a t  a temperature of 
T, = -5 "C (0, = 0). At early time the fringe patterns appear near the top and the 
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(0.5 

(C ) (4 
FIGURE 10. The contours of (a) isotherms ( A 0  = 0.1); (b) streamlines; (c) isotherms in the cavity 
( A 0  = 0.091); (d )  velocityvectors. Ra* = 1.01 x lo8, Pr = 0.71, A = 1, L I H  = 1,# = 0.36, k* = 7.4 
and a* = 0.008. 

bottom of the cavity owing to the sudden thermal disturbance of the walls. As shown 
in figure 9 ( a ) ,  the isotherms are convex in shape a t  the top and the bottom of the 
cavity since the thermal diffusivity of air is larger than that of the solid (a /a ,  = 150). 
As the time progresses, the number of fringes increases, but the fringes also straighten 
out along the horizontal plane, except near the vertical walls of the cavity. This is 
a result of thermal stratification of the fluids as shown in figures 9(c,  d) .  In  this 
configuration the heavier fluid lies below theyighter, and the fluid is always stable 
owing to higher temperatures a t  the top of the cavity. However, horizontal 
temperature gradients are produced a t  the solid-fluid interface owing to the 
differences in heat conduction between the solid and the fluid. The interference-fringe 
patterns photographed suggest that  natural convection does indeed occur in the 
cavity where the buoyancy force is sufficiently large (i.e. near the vertical walls). 
However, this motion was probably relatively weak and was not detected using other 
independent means. 

I n  a rectangular cavity heated from above the fluid should be stable and no 
convective motion could occur in the absence of heat conduction along the vert,ical 
walls. I n  the present experiment where the rectangular cavity is surrounded by 
conducting walls, the temperature difference between the solid and the fluid generates 
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FIGURE 1 1 .  Nusselt number distributions along the four walls of the cavity (see figure 10 for 
parameters). 

sufficiently large buoyancy force in the fluid and induces natural convection motion. 
As the temperature difference across the cavity increases, convective motions become 
more intense and increase mixing. The mixing produces a more uniform temperature 
(see figure 9 d )  along the horizontal plane. The interference-fringe patterns should be 
symmetric about the vertical plane through the centre of the cavity, but experi- 
mentally symmetry could not be realized. This is most likely due to non-symmetric 
heat losses to the ambient surroundings. The relatively large horizontal temperature 
gradients in the corners of the cavity indicate that convective transport of heat can 
be expected in the inherently stable orientation when the vertical walls have a finite 
conductance. 

Predicted flow and temperature jields 

Even though no detailed velocity measurements were made nor flow visualized, 
the predicted isotherms and velocity vectors (figure 10) provide useful information. 
Near the adiabatic vertical outside walls the temperature decreases almost linearly 
with the distance from the hot top wall to the cold bottom wall. However, differences 
in the thermal conductivities of the solid and the fluid produce a nonlinear 
temperature variation with the distance along the solid-air interface (figure 10a). As 
a result of nonlinear temperature gradients in the connecting vertical walls, convective 
motion is induced in the fluid. Four individual cells are formed in the cavity (figure 
10b) .  The circulation produced in the cells is relatively weak because of thermal 
stratification of air in the cavity, but convective flows are consistent with the 
interference-fringe patterns photographed. 

The steady-state local Nusselt numbers a t  the four walls of the cavity are shown 
in figure 11. In  the absence of heat conduction along the vertical connecting walls, 
this is an inherently stable fluid configuration. A comparison of the results with those 
presented in figure 6 shows that the Nusselt numbers are considerably smaller for 
this arrangemcnt, but they do not vanish a t  the connecting walls. The results also 
show that the Nusselt numbers at the hot and cold horizontal walls are not symmetric 
about the midplane of the cavity. At the connecting vertical walls, the Nussclt 



170 D .  M .  Kim & R .  Vi'iskanta 

FIGURE 12. Comparison of the measured and predicted steadv-state temneratures in air in the 
absence of radiation ; 
a* = 0.008. 

Ra* = 0 . 6 4 ~  lo6, Pr ='0.71, A = 1, H/L = 1, i= 0.36, k* = 7.4 and 
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FIGURE 13. Comparison of the measured and predicted steady-state temperatures in air in the 
absence of radiat,ion; Ra* = 1.01 x lo6, Pr = 0.71, A = 1, HfL = 1, 9 = 0.36, k* = 7.4 and 
a* = 0.008. 

numbers change sign a t  the midplane of the cavity. They are negative in the upper 
half and positive in the lower half of the cavity. 

Cornparison of experimental data with predictions 

A comparison between the measured and predicted steady-state temperatures in 
the cavity for one of the experiments is given in figure 12. The squares denote the 
experimental data and the solid lines represent numerical predictions. The agreement 
between the data and predictions is good throughout most of the cavity. I n  figure 
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12 the dashed lines indicate isotherms predicted by a pure-conduction model, i.e. 
absence of convection in air, and the solid lines denote the results with natural 
convection (solid lines) induced by heat conduction along the connecting vertical 
walls. Examination of results shows clearly that the model that considers convective 
motion in the fluid (solid lines) is in better agreement with the data than the one that 
considers conduction (dashed lines) in the fluid. The discrepancies could be due to 
uncertainties in the thermophysical properties of the solid and to the heat losses 
(gains) from the ends of the cells to the ambient surroundings. As mentioned 
previously, i t  should be remembered that the interference fringes represent temper- 
atures averaged along the test beam, but the reference temperatue was obtained from 
the local surface temperature measured a t  the midplane of the test cell. 

Figure 13 shows a comparison of steady-state measured and predicted temperatures 
in the cavity for a larger temperature difference than for the experiment discussed 
in figure 12. The agreement between the data and predictions is seen to be quite good. 
A comparison of measured and predicted temporal variation of temperature in the 
solid yielded excellent agreement (Kim 1983). 

4.3. Heafing from the bottom and cooling f rom the top 

Interference-fringe patterns 
The interference-fringe patterns were photographed during the transient and are 

presented for a typical experiment in figure 14. Initially, the solid and the fluid had 
a uniform constant temperature To = 21 "C (0, = 0.5). The hot wall was kept a t  a 
temperature of TH = 47 "C (0, = l . O ) ,  and the cold wall was maintained a t  a 
temperature of T, = - 5  "C (0, = 0). At 7 = 5 the fringes first appeared near the 
bottom and the top of the cavity owing to the penetration of the thermal wave 
through the wall. The effect of the buoyancy on the fringe appears to  be small since 
the isotherms remain convex near the hot bottom a t  early times, as shown in figure 
14(a) .  As the time progresses, the fringes move upward from the bottom and come 
down near the top of the cavity owing to the convective motion that has been 
established in the air. However, as evident from figure l .Z(b) ,  most of the central core 
of the cavity remains a t  nearly uniform temperature. At steady state (figure l4d) 
the interference fringes are distorted and form cells. The flow may be 'turbulent' 
(random laminar flow) resulting from thermal-plume activity since the Rayleigh 
number reaches a value of the order of lo6 (Chu & Goldstein 1973). However, owing 
to mixing the temperature in the central core of the cavity remains nearly uniform 
and cells are seen to form, as shown in figure 14(d). As the temperature difference 
across the wall increases, a more intense cellular motion develops, and the flow 
appears to  be turbulent owing to mixing of the fluid. Conduction along the vertical 
connecting walls serves to inhibit longitudinal motion by thermally stratifying the 
fluid. 

Predicted $ow and temperature jields 
Figure 15 shows the predicted isotherms and the velocity vectors for a Rayleigh 

number Ra* = lo6. Near the adiabatic vertical outside walls, the temperature 
decreased almost linearly with the distance from the hot bottom to the cold top 
horizontal wall. However, natural convection causes the fluid to take up a nonlinear 
temperature profile a t  the solid-fluid interface (figure 15n). Because of the heating 
a t  the bottom of the outside horizontal boundary, the warm fluid rises along part 
of the vertical wall but does not reach the upper wall. The fluid is cwoltd at the uppcr 
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FIGURE 14. Transient isotherms for Ra* = 1.01 x lo6, Pr = 0.71, A = 1 ,  H / L  = 1 ,  4 = 0.36, 

k* = 7.4 and a* = 0.008: ( a )  T = 5 ;  ( b )  10; ( c )  20 ;  ( d )  00 (steady state). 

wall and descends along most of the vertical walls. The thermal structure in the cavity 
could be explained more clearly by referring to the velocity vectors (figure 15d). The 
air rises from below in the centre of the cavity owing to heating, and reaches the upper 
cooled wall. It falls down along the vertical walls, which are cooled from the top. 
However, as the cold air meets the hot air rising along the lower part of the vertical 
walls, it changes its direction and turns toward the centre of the cavity. Secondary 
flow predicted in the two corners near the bottom (figure 15b) is generated by local 
temperature differences between the wall and the fluid. 

The steady-state local Nusselt numbers a t  the four walls of the cavity arc shown 
in figure 16. Heating from below is an inherently unstable fluid configuration. Positive 
Nusselt numbers a t  the vertical connecting walls in the lower part of the cavity 
indicate heat addition to the fluid in the lower third of the cavity. The direction of 
heat transfer at the connecting walls is reversed, and the fluid is cooled in the next 

of the cavity height. The direction of heat flow is again reversed in the vicinity of 
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FIGURE 15. The contours of (a )  isotherms (A@ = 0.1); ( b )  &earnlines, (c) isotherms in the 
cavity (A@ = 0.064); (d )  velocity vectors. Ra* = 1.01 x los, Pr = 0.71, A = 1, L/H = 1. q% = 0.36, 
k* = 7.4 and a* = 0.008. 

FIGURE 16. Nusselt-number distributions along the four walls of the cavity (se? figure 15 for 
parameters). 
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FIGURE 17. Comparison of the measured and predicted steady-state temperatures in air in the 
absence of radiation; Ra* = 1.01 x lo6, Pr = 0.71, A = 1 ,  HIL = 1 ,  4 = 0.36, k* = 7.4 and 
a* = 0.008. 

the cold surface of the cavity and becomes positive over the upper & of the connecting 
walls. Because of the orientation of the enclosure with respect to the gravitational 
field, the local Nusselt numbers are not symmetrical about the horizontal midplane 
of the cavity, but are symmetrical about the vertical centreplane of the cavity. The 
vertical connecting walls have a stabilizing effect on the fluid, and as a consequence 
the average Nusselt number a t  the cooled upper horizontal surface is lower than at 
the heated bottom surface. 

Comparison of predictions and experimental data 
Figure 17 shows a comparison between the steady-state measured and the 

predicted steady-state isotherms in the cavity for a typical experiment. The squares 
indicate the experimental data points and the solid lines denote numerical predictions. 
Although the trends between data and the predictions are consistent, significant 
discrepancy is evident at isotherms 0.45 and 0.52. The discrepancy could be due to 
numerical truncation errors and/or heat losses to the ambient. The model simulates 
laminar convection, but the thermal-plume activity in the experiments may have 
produced turbulent convection. Hence the numerical model for laminar flow may not 
simulate correctly the flow regime a t  higher Rayleigh numbers. 

A comparison between the measured and the predicted solid temperature shows 
eacellent agreement (Kim 1983). This may be due in part to small temperature 
differences between the horizontal walls and the fact that  the solid temperatures are 
more forgiving and provide a less critical measure of comparison. Similarly, good 
agreement between data and predictions has been obtained for other experiments 
with larger temperature differences imposed across the wall. However, the discrepancy 
between data and predictions was somewhat higher, but still very reasonable. 
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5. Conclusions 
The experiments performed have shown a very significant effect of wall conduction 

on t,he convective heat transfer in an enclosure of aspect ratio unity. The effect is 
greatjest for heating from above, and less significant but nonetheless important for 
heating from the side and the bottom. Wall conduction induces convection in the first, 
and convection induces conduction in the latter two configurations. Heat, conduction 
along the conducting adiabatic (on the outside) walls simultaneously stabilize and 
destabilize the fluid in the cavity. 

I n  conjugate heat-transfer problems of the type considered in this study, the 
heat-transfer-coefficient concept may not be meaningful for correlating analytical and 
experimental results. The Nusselt number depends not only on the flow but also on 
the thermal and geometrical paramet,ers of the walls enclosing the cavity. 

The experimental data for the particular system considered in the study is in good 
agreement with the prediction. However, significant studies remain to be done, such 
as the det>ermination of the velocity field within the enclosure, including measure- 
ments of the effect of wall conductance on the convective-flow patterns and heat 
transfer in relatively #mall aspect ratio enclosures for different Prandtl number fluids 
(Catton et al. 1983). 
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